YEAR 10 SUMMER WORK 2018

In September you will have an assessment on the work set this summer. You are required to learn the following:

- All equations in the Physics Equation list
- Required practical activities for paper 1
- Biology Infections and response topic knowledge mats
- Chemistry Ionic and Covalent bonding knowledge mats

Your test will include a range of recall and application questions based on the Biology and Chemistry topics and recall and manipulation questions on the Physics equations and practicals from paper 1.

AQA PHYSICS EQUATION LIST

Below are all of the equations you will be expected to REMEMBER for your exam. The equation that is higher tier only is highlighted.

Word Equation	Symbol Equation
Weight = mass x gravitational field strength (g)	W = m x g
Work Done = force x distance	W = F x s
Force (applied to a spring) = spring constant x extension	F = k x e
Moment of a force = force x distance	$M = F \times d$
Pressure = $\frac{\text{force normal to a surface}}{\text{area of the surface}}$	$p = \frac{F}{A}$
Distance travelled = speed x time	s = v x t
Acceleration = $\frac{\text{change in velocity}}{\text{time taken}}$	$a = \frac{\Delta v}{t}$
Resultant Force = mass x acceleration	F = m x a
Momentum =mass x velocity	ρ = m x v

Kinetic energy = 0.5 x mass x speed ²	$E_k = \frac{1}{2} x m x v^2$
Gravitational Potential Energy = mass x gravitational field strength x height	$E_p = m \times g \times h$
$Power = \frac{energy transferred}{time taken}$	$P = \frac{E}{t}$
$Power = \frac{work \ done}{time \ taken}$	$P = \frac{W}{t}$
Efficiency = $\frac{\text{useful energy out}}{\text{total energy in}}$	
$Efficiency = \frac{total\ power\ out}{total\ power\ in}$	
Wave speed = frequency x wavelength	v = f x λ
Charge flow = current x time	Q = I x t
Potential difference = current x resistance	V = I R
Power = potential difference x current	P = V I
Power = current ² x resistance	$P = I^2 R$
Energy transferred = Power x time	E = P t
Energy transferred = charge flow x potential difference	E =Q V
Density = $\frac{\text{mass}}{\text{volume}}$	$\rho = \frac{m}{v}$