
GCSE Unit 2.1 | Algorithms

Name:

Specification & learning objectives

• Computational thinking.

• Standard searching algorithms.

• Standard sorting algorithms.

• How to produce algorithms.

• Interpreting, correcting and completing algorithms.

Resources

PG Online text book page ref: 66-88

CraignDave videos for SLR 2.1

https://www.youtube.com/watch?v=TVUvDdpmI70&list=PLCiOXwirraUAf7ueVPl99gktxzJNEIyCC

GCSE Unit 2.1 | Algorithms

Abstraction

Abstraction means:

Example of an abstraction:

Real aeroplane: Paper aeroplane: Necessary features of a paper aeroplane:

Unnecessary features of a paper aeroplane:

GCSE Unit 2.1 | Algorithms

Abstraction

Dog: Dog icon: Necessary features of the icon: Unnecessary features of the icon:

Rabbit: Rabbit icon: Necessary features of the icon: Unnecessary features of the icon:

Cat: Cat icon: Necessary features of the icon: Unnecessary features of the icon:

GCSE Unit 2.1 | Algorithms

Abstraction

City Latitude (N)

Dublin 53.3498

London 51.5074

Oslo 59.9139

Paris 48.8566

Madrid 40.4168

A computer program that outputs whether a capital city in Europe is north or south of another capital city in Europe only needs to know the latitude of the two
cities. The other detail is unnecessary. This is an example of abstraction: including the necessary detail and not including the unnecessary detail.

Program:

GCSE Unit 2.1 | Algorithms

Decomposition

Decomposition means:

Examples of problem decomposition in every-day life:

Making toast: Making a fairy cake:

[Picture of toast
here]

[Picture of fairy
cake here]

GCSE Unit 2.1 | Algorithms

Decomposition

Advantages of decomposition include:

Example of problem decomposition in making costume jewellery:

Red beads

Purple beads

Chain

GCSE Unit 2.1 | Algorithms

Algorithmic thinking

Decomposition of pick up sticks:

Program:

GCSE Unit 2.1 | Algorithms

Algorithmic thinking

Decomposition of noughts and crosses:

GCSE Unit 2.1 | Algorithms

Linear search

Explanation of a linear search:

Steps to find the Geography
book on the shelf using a
linear search:

Pseudocode of the linear
search algorithm:

book = ["Archaeology", "Art", "Biology", "Chemistry", "Computing", "English", "French",
"Geography", "History", "Maths", "Psychology"]

GCSE Unit 2.1 | Algorithms

Binary search

Explanation of a binary search:

Steps to find the Geography
book on the shelf using a
binary search:

Special condition for a binary search to work:

In most cases, the quicker search is performed by the: algorithm. However, this is not true if the first item in the list is the one you want to find.

If the item you want to find is first in the list then the algorithm would be quicker.

GCSE Unit 2.1 | Algorithms

Pseudocode of the binary
search algorithm:

book = ["Archaeology", "Art", "Biology", "Chemistry", "Computing", "English", "French",
"Geography", "History", "Maths", "Psychology"]

found = False
left = 0
right = LEN(book)-1
find = "Geography"

Binary search

GCSE Unit 2.1 | Algorithms

How a bubble sort works:

Bubble sort

32

2

16

8

24

Check 2
and 32.
Swap

Check 32
and 16.
Swap.

Check 32
and 8.
Swap.

Check 32
and 24.
Swap.

Check 2
and 16.

No swap.

Note how 32 has “bubbled” to the top.
This is how the bubble sort got its name.

Check 16
and 8.
Swap.

Check 16
and 24.

No swap.

Check 2
and 8.

No swap.

Check 8
and 16.

No swap.

2

8

16

24

32

The algorithm has been optimised so it does not check the
numbers already bubbled to the top. It can also stop if no
swaps are made after all the numbers are checked.

Check 2
and 8.

No swap.

GCSE Unit 2.1 | Algorithms

Merge sort

How a merge sort works:

38

27

43

3

9

82

Swap number
pairs if

necessary.

Split list until
lists have 2
numbers.

Original list. Merge adjacent
lists together.

Until all lists are
merged.

GCSE Unit 2.1 | Algorithms

Merge sort

How a merge sort works:

Split into
adjacent sub-

lists of up to two
numbers.

Swap numbers
if necessary in
each sub list.

8 and 16 swap.

Merge adjacent lists together
by comparing the first number
in each list, moving the
smaller number into a new
list, one number at a time.

Merge adjacent lists together
by comparing the first number
in each list, moving the
smaller number into a new
list, one number at a time.

Original
list.

32

2

16

8

24

GCSE Unit 2.1 | Algorithms

Insertion sort

How an insertion sort works:

32

2

16

8

24

Yellow dotted box:
unsorted data in the list:

Green solid box:
sorted data in the list:

? inserted
in place.

? inserted
in place.

? inserted
in place.

? inserted
in place.

? inserted
in place.

GCSE Unit 2.1 | Algorithms

Flow diagram symbols

Line

GCSE Unit 2.1 | Algorithms

How to produce algorithms using flow diagrams

An algorithm for an RPG game
displays 3 choices from a menu and
allows the user to enter their choice.

1. Play game
2. Change character
3. Quit

The user input is validated so only
the numbers 1-3 can be entered.

GCSE Unit 2.1 | Algorithms

Interpret, correct or complete algorithms.

An algorithm for an RPG game
displays 3 choices from a menu and
allows the user to enter their choice.

1. Play game
2. Change character
3. Quit

The user input is validated so only
the numbers 1-3 can be entered.

DO
OUTPUT “1. Play game”
OUTPUT “2. Change character”
OUTPUT “3. Quit”

INPUT INT(choice)

WHILE choice<1 AND choice>4

GCSE Unit 2.1 | Algorithms

How to produce algorithms using flow diagrams

An algorithm for an RPG game
handles a battle between two player
characters.

Each character has an attack and
defence attribute that must be input
by the user before an engagement.

When the two characters engage, a
random number between 1 and 12 is
generated for each player.

The attack attribute plus the defence
attribute is added to the player's dice
roll.

If player 1’s total is greater than
player 2’s total, player 1 wins
otherwise player 2 wins.

The winner is output.

GCSE Unit 2.1 | Algorithms

How to produce algorithms using pseudocode

An algorithm for an RPG game
handles a battle between two player
characters.

Each character has an attack and
defence attribute that must be input
by the user before an engagement.

When the two characters engage, a
random number between 1 and 12 is
generated for each player.

The attack attribute plus the defence
attribute is added to the player's dice
roll.

If player 1’s total is greater than
player 2’s total, player 1 wins
otherwise player 2 wins.

The winner is output.

GCSE Unit 2.1 | Algorithms

Interpret, correct or complete algorithms.

Modified algorithm to correct an
issue with player 2 winning more
battles than player 1.

GCSE Unit 2.1 | Algorithms

Interpret, correct or complete algorithms.

An algorithm for an RPG game
generates a list of random caverns
into which objects will be placed.

Caverns are numbered 1-50.
The number of caverns to return is n.

FUNCTION randomcaverns(n)
caverns = []
FOR c = 1 TO n

valid = TRUE
WHILE valid = FALSE

r = RANDOM (1,50)
valid = FALSE
FOR i = 0 TO caverns.LENGTH

if caverns[i] = r THEN valid = FALSE
NEXT i

ENDWHILE
caverns[c] = c
NEXT c
RETURN caverns

ENDFUNCTION

GCSE Unit 2.1 | Algorithms

How to produce algorithms using flow diagrams

An RPG game allows a player to input
their next move by entering N, E, S
or W. The valid moves are stored in
a list like this: move = [0,1,0,1]
Zero means the move is not possible.
One means it is possible. The
possibilities are stored in the list in
the order: N, E, S, W.

A function takes two parameters:
m is the move: “N”, “E”, “S” or “W”;
vm is a list of the valid moves.

Assuming a zero indexed list/array.

GCSE Unit 2.1 | Algorithms

How to produce algorithms using pseudocode

An RPG game allows a player to input
their next move by entering N, E, S
or W. The valid moves are stored in
a list like this: move = [0,1,0,1]
Zero means the move is not possible.
One means it is possible. The
possibilities are stored in the list in
the order: N, E, S, W.

A function takes two parameters:
m is the move: “N”, “E”, “S” or “W”;
vm is a list of the valid moves.

GCSE Unit 2.1 | Algorithms

Assessment Target: Overall grade:

Minimum expectations by the end of this unit

 You should have learnt terms 100-111 from your GCSE Level Key Terminology during this unit.

 You have completed all the pages of the workbook

 Score 80% in the end of unit test.

Feedback

Breadth Depth Understanding

 All aspects complete  Excellent level of depth  All work is accurate

Most aspects complete  Good level of depth Most work is accurate

 Some aspects complete  Basic level of depth shown  Some work is accurate

 Little work complete  Little depth and detail provided  Little work is accurate

Comment & action Student response

GCSE Unit 2.1 | Algorithms

Reflection & Revision checklist

Confidence Clarification

 I can explain what is meant by the term abstraction.

 I can explain why abstraction is helpful when we are designing a solution to a problem.

 I can explain what decomposition is and how it is useful.

 I can explain what is meant be ‘algorithmic thinking’.

 I can explain how a binary search works.

 I can explain how a linear search works.

 I can explain how a bubble sort works.

 I can explain how a merge sort works.

 I can explain how an insertion sort works.

 I can explain how to produce pseudocode to describe an algorithm and why it is needed.

 I can explain how to produce a flow diagram to describe an algorithm.

 I can interpret, correct and complete a range of algorithms.

My revision focus will need to be:

